
Combinatorial Hopf algebras in particle physics I

Erik Panzer
Scribed by Iain Crump

May 25

1 Combinatorial Hopf Algebras

Quantum field theory (QFT) describes the interactions of elementary par-
ticles. There are many different QFTs. These have different particles with
different interactions.

Example. Quantum electrodynamics (QED) has two particles;

• electron

• photon ,

and only one allowed interaction; .

From these building blocks, we can build arbitrary graphs. The problem
is that quantum field theory is very difficult to solve, and even difficult to
give a well-defined mathematical meaning. What you can do in practice is
compute in perturbation theory. In perturbation theory we compute by an
approximation or asymptotic expansion, where each process is described by
an infinite sum of Feynman graphs.

Example. In QED, consider an experiment where we throw in two electrons
and at the end we get two electrons back,

+ · · ·=? + + + + · · ·+

.

1

In perturbation theory we assume the coupling (the interaction strength)
is small, so we assume graphs with no vertices are the most important
graphs, and graphs with more vertices come with a coupling constant. There
are infinitely many diagrams, and all of them contribute to the process. In
a perturbative QFT computation, you define a particular process and a par-
ticular theory, and then you have to draw all the diagrams corresponding to
these rules, and then you have to each probability as a contribution to the
process.

The Feynman rules assign to each graphG a Feynman integral Φ(G, p,m),
where p is the momenta and m the masses of the particles. Computing these
integrals and adding them up gives an estimate of the energy the physical
process should give during the experiment. This theoretical prediction can
be compared to experimental measurements, and if you are lucky this can
result in the discovery of the Higgs boson, for example. The problems with
this are twofold, and will be discussed in the following subsections.

1.1 Renormalization

Usually Φ(G) = ∞, and they do not make any sense when written down.
This is a well-known problem which slowed the advancement of QFT for
a long time, but was solved decades ago (and will be explained in greater
detail in the next lecture).

To fix this, we redefine constants (g,m), g the coupling constant (the
probability of an interaction; if the coupling is high an interaction is more
likely to occur, if the coupling is zero then we have a free theory), to cancel
divergences. The idea is that while these integrals are infinite they did not
depend on the masses or momenta so we can subtract infinity and make it
a well-defined function. This is not so easy to do, as in order to give this
physical meaning you be sure that the things that you change your param-
eters by are constants. For example, you cannot take a different constant
to subtract for each momentum. Hence, the change must work for each
diagram. This is called locality of counterterms, and will be examined next
lecture.

This requires nested, recursive subtractions. In physics, there is a forest
formula that describes this. To do this with mathematical rigor we use the
Connes- Kreimer Hopf algebraic formulation. The renormalization can be
formulated completely combinatorially, forgetting about the integrals.

2

1.2 Computing Φ(G)

This is known to be difficult and extremely complicated. For example,

Φ

 m1

m2

m3

 was computed only two years ago.

In many cases (though not this previous one), Φ(G) are multiple polylog-
arithms (MPL). This will be discussed on Wednesday. There are infinitely
many interesting (non-trivial) graphs with Feynman integral that can be
computed algorithmically using MPL (actually hyperlogarithms). These
algorithms are very nicely expressible using Hopf algebras. Again, this sep-
arates the analytics from the combinatorics. We try to compute a function
on many variables, but in this case we can formulate the algorithm on a
purely combinatorial level; each of the MPL can be written as a word over
a certain alphabet, and things like integration or limits of functions rep-
resented by the word can be written as combinatorial operations on this
algebra of words. We will take a look at a simple version of this on Friday.

2 Hopf algebras

Definition. An (associative, unital) algebra over a field k is a k-vector space
A with a linear map multiplication m : A⊗A → A such that

1. m(m⊗ id) = m(id⊗m) (associativity)

2. ∃1 ∈ A such that m(id⊗ 1) = id = m(1⊗ id).

Since this is a vector space we can of course multiply by scalars and add
vectors. We will always take k = Q. Usually, we have the distributive law;

m(v + w, u) = m(v, u) +m(w, u)

(v + w)u = v · u+ w · u.
This is already encoded in saying that multiplication is a linear map. Ac-
tually, the distributive laws tell you that the multiplication is a bilinear
map.

Remark 1. Say {vi : i ∈ I} is a basis of vector space V and {wj : j ∈ J}
is a basis of vector space W . Then {vi ⊗ vj : (i, j) ∈ I × J} is a basis of
V ⊗W .

Universal property: For any bilinear map b : V ×W → Z, there exists a
unique linear map b̃ : V ⊗W → Z (linear) such that

3

b : V ×W Z

⊗
b̃

V ⊗W ,

where ⊗ : V ×W → V ⊗W by
(∑

i λivi,
∑

j µjwj

)
7→∑

i,j λiµjvi ⊗ wj .
Associativity:

A⊗A⊗A

A⊗A

A

m⊗id id⊗m

m

A⊗A
m

Example. To give an example that we have all seen before, polynomials in
any number of variables Q[x1, ..., xn]. Here, 1 = 1x01 · · ·x0n.

The tensor algebra is a little more complicated.

Definition. Let V be a vector space. The tensor algebra is

T (V) :=
⊕
n≥0

V ⊗n = Q · 1⊕ V ⊕ V ⊗ V ⊕ V ⊗ V ⊗ V ⊕ · · · .

It has the concatenation product

v1 ⊗ · · · ⊗ vn · vn+1 ⊗ · · · ⊗ vn+m = v1 ⊗ · · · ⊗ vn+m ∈ V ⊗(n+m) ⊆ T (V).

Hence, T has an associative product, we have a neutral element 1, and
it is obviously not commutative.

The tensor algebra is a general construction and appears often. For
example it is the Hopf algebra we will need for iterated integrals; when we
want to compute a Feynman integral, this is what appears naturally.

Remark 2. If we choose some basis of our vector space, the tensor algebra
is actually the linear span of all these elementary tensors; if {vi | i ∈ I} is
a basis of V , then T (V) = limQ{vi1 ⊗ · · · ⊗ vin | n ∈ N0, i1, ..., in ∈ I}. We
write vi1 , ..., vin for this, where these are words over the alphabet I.

Example. For a finite basis V = limQ{v0, v1},

T (V) = {λ1+λ0v0+λ1v1+λ12v1v2+λ21v2v1+· · · | only finitely many λ are nonzero}.

4

We see here a combinatorial structure; we have identified the basis with
words, and this gives the algebra itself additional structure. Because our
algebra is composed of these strings we can do things other than multiplica-
tion. This is a general concept of combinatorial Hopf algebras; the objects
making up the algebra is combinatorial and they have substructures. These
substructures can be exploited to give more information about the elements.
Multiplication takes two elements and gives a bigger element. Conversely,
the coproduct;

∆ : T (V)→ T (V)⊗ T (V),

vi1 · · · vin 7→
n∑
j=0

vi1 · · · vij ⊗ vij+1 · · · vin .

Further, (∆⊗ id)∆ =
∑

j1≤j2 vi1 · · · vij ⊗ vij1+1 · · · vij2 ⊗ vij2+1 · · · vin .
So, ∆ is called coassociative; (∆ ⊗ id)∆ = (id ⊗∆)∆. Note that ∆w =∑
w(1) ⊗ w(2) = 1 ⊗ w + w ⊗ 1 +

∑
w′ ⊗ w′′, where this last sum is all

non-trivial terms.
Define E : T (V) → Q by E(1) = 1, E(vi1 · · · vin) = 0 if n > 0. Then,

(E ⊗ id)∆(w) = w = (id⊗ E)∆(w). This is called the counit property.
So, we have an analogue of multiplication and the unit in the coproduct

case; a counit which is dual to the unit. The question is if these structures
have something in common with each other.

For a Hopf algebra, we want to have

1. ∆(a · b) = ∆(a) ·∆(b)

2. E(a · b) = E(a) · E(b).

Checking,

∆(v0v1) = 1⊗ v0v1 + v0 ⊗ v1 + v0v1 ⊗ 1

∆(v0)∆(v1) = (1⊗ v0 + v0 ⊗ 1)(1⊗ v1 + v1 ⊗ 1) = ∆(v0v1) + v1 ⊗ v0.

Hence, we must define a new product or coproduct to rectify this. For our
purposes, it makes more sense to define a new product.

Definition. The shuffle product � : T (V)⊗ T (V)→ T (V) is

vi1 · · · vin � vin+1 · · · vin+m =
∑

σ∈Sn,m

viσ(1) · · · viσ(n+m)

where the (n,m) shuffles are

Sn,m = {σ ∈ Sn+m | σ−1(1) < · · · < σ−1(n), σ−1(n+1) < · · · < σ−1(n+m)}.

5

Example. v0v1 � v2 = v0v1v2 + v0v2v1 + v2v0v1

There is also a recursive definition of the shuffle product. If w1, w2 ∈
T (V) and v1, v2 ∈ V , then

(v1w1)� (v2w2) = v1(w1 � v2w2) + v2(v1w1 � w2).

We see that the shuffle product has the properties we want.

Lemma 3. 1. � is associative

2. a� 1 = a

3. ∆(w1 � w2) = ∆(w1)�∆(w2), the latter shuffle being �⊗�

4. � is commutative.

The bialgebra (T (V),�,∆) is called the shuffle algebra.
We also have the ability to multiply to linear maps. This is unusual, as

normally if you multiply two linear maps you get a quadratic map.

Definition. Let H be a bialgebra and some algebra A. For f, g : H → A,
f ? g := m · (f ⊗ g) ·∆H, the convolution product.

A

H

H⊗H

A⊗A

∆

m

f g

Lemma 4. 1. f ? (g ? h) = (f ? g) ? h

2. e(A) := 1(A) · E is the neutral element.

This is a powerful way of encoding combinatorial operations. An equa-
tion where you write down the convolution product can mean a lot of com-
putation in practice; you compute the coproducts of all objects involved,
and sometimes this greatly simplifies complicated formula.

Question 1. Are there inverses? In particular, does id have an inverse?

6

Definition. The bialgebra H is called Hopf if and only if the id has an
inverse with respect to ?. If so, this is called the antipode S := id?−1. That
is, S ? id = e.

Lemma 5. The tensor algebra with shuffle product (T (V),�,∆) is Hopf,
and S(vi1 , ..., vin) = (−1)nvin · · · vi1.

Example. To check that this is in fact the antipode,

(S ? id)(v1v2) = S(v1v2) + S(v1)� v2 + v1v2

= v2v1 + (−v1)� v2 + v1v2 = 0.

3 Hopf algebras of rooted trees

Definition. A rooted tree (t, r) is a tree t together with a distinguished
vertex, the root, r ∈ V (t).

Remark 6. We consider isomorphic classes (ie. there is no labeling on the
trees and no distinguishing between left and right, hence not plane trees).

T1 = { }, T2 =

{ }
, T3 =

 ,

 , ...

We will distinguish the root by drawing it at the top of the tree.

Definition. Rooted forests are disjoint unions of rooted trees.

F0 = {1},F1 = { } ,F2 =

{
,

}
,F1 = T3 ∪

{
,

}
, ...

With the definitions of trees and forests, we can immediately make an
algebra out of it.

Definition. HR := Q[T] = limQF . We give HR the product from T ,
disjoint union; (

2 +

)
· () = 2 + .

To make this a Hopf algebra, we need a coproduct.

7

Definition. Recall that a rooted forest induces a partial order on its ver-
tices, “below”; 4. Hence,

∆(f) =
∑

C⊆V (f)
C incomparable

PC(f)⊗RC(f),

where PC(f) =
∏
v∈C{w | w 4 v} and RC(f) = f \ PC(f). By incompa-

rable, we mean subsets such that there are no two vertices connected by an
upwards-only path in the forest.

Example.

∆() = 1⊗ + ⊗ 1

∆

()
= ⊗ 1 + 1⊗ + ⊗

∆

()
= 1⊗ + ⊗ 1 + 2 ⊗ + ⊗

Note that for trees, the right hand side of ∆ is always trees. Hence, ∆
is not co-commutative (symmetric about the tensor).

Lemma 7. HR is a bialgebra.

Outline. That it is an algebra we have seen. We need to check that it is
coassociative, that the coproduct is compatible with the product, and we
have to define the counit.

E(1) = 1

E(f) = 0 for all f ∈ F>0

(E ⊗ id)∆ = (id⊗ E)∆ = id

∆(t1t2) = ∆(t1)∆(t2)

(∆⊗ id)∆ = (id⊗∆)∆ (left as an exercise).

We also can define the coproduct with a recursive definition, which is
useful for inductive proofs.

Definition. The linear map B+ : HR → HR is defined by

B+(t1, ..., tn) :=
r

t1 tn
...

.

8

Note that B+ : F → T is bijective.

Lemma 8. ∆B+ = (id⊗B+)∆ +B+ ⊗ 1

Proof. Looking at the coproduct, if r ∈ C, C = {r}, so

PC(B+(· · ·))⊗RC(B+(· · ·)) = B+(t1 · · · tn)⊗ 1.

If r /∈ C, C is just a set of incomparable elements of t1, ..., tn. What remains
is not only the remainders of the individual trees, but glued together by
B+.

As each forest is a product of trees and each tree comes through B+ as
a forest, we get a recursive definition for the coproduct.

Example.

∆

()
= ∆(B+()) = (id⊗B+)([∆()]2) + ⊗ 1

=

(
1⊗ + 2 ⊗ + ⊗

)
+ + ⊗ 1

∆() = ∆B+(1) = (id⊗B+)(1⊗ 1) + ⊗ 1

= 1⊗ + ⊗ 1

Remark 9. Every forest can be constructed recursively by iteration of m
and B+. So, imposing ∆B+ = (id⊗B+)∆+B+⊗1 uniquely determines ∆.

The following definitions are needed for the exercises.

Definition. A primitive element p is an element such that ∆p = 1⊗p+p⊗1.

Definition. For forest f , the grading operator Y is Y f := f · |V (f)|.

ie. Y =

Y = 2

Definition. A grading of H is a decomposition H =
⊕

n≥0Hn such that;

1. m(Hn,Hm) ⊆ Hn+m
2. ∆(Hn) ⊆∑k+l=nHk ⊗Hl.

9

